
4850 

sensitivity to LD from possibly nonhelical fibers. 
However, when chiral ethyl cellulose was employed as the 

rigid matrix, CD (0rcai) was observed within the absorption 
bands of the J-aggregate species (see Figure 1). Figure 1 pre­
sents the absorption spectra of 1 as the monomer, the J-ag­
gregate species, and the CD and absorption spectrum of mix­
ture of J-aggregate and monomer in ethyl cellulose. The an-
isotropy factor (g = AA/A) for the 572-nm band of the J-
aggregate in ethyl cellulose was found to be 9.7 X 10 -4 

(compared to 7.3 X 10 -3 for l,l'-diethyl-2,2'-cyanine D-IO-
camphorsulfonate formed in achiral Lexan) and is indicative 
of a dissymmetric arrangement of chromophores.27 We feel 
that the nucleation of enantiomeric crystallites in chiral 
polymers, which are optically transparent in the spectral region 
of interest, offers a general technique for probing the electronic 
nature of potentially chiral systems such as J-aggregates. This 
technique is similar to resolutions using single crystals of one 
enantiomer which have been shown to effect nucleation and 
crystallization of a second chiral substance.28 Recent spec­
troscopic observations29 on single crystals of 1 support our 
contention of the microcrystalline nature of J-aggregate 
species. Interest in extrinsic CD of achiral cationic dye species 
has been stimulated since 1961 by the report by Stryer and 
Blout that CD is induced in 1 by helical poly-o-L-glutamic 
acid.30 Of the three models proposed to account for the ob­
servation of extrinsic CD in achiral dyes, our investigations 
support the tangential dye helix model where the rigid a helix 
serves simply as a nucleating site for the microcrystalline J-
aggregate. 

We have also extended the above technique to the investi­
gation of J-aggregate formation in pyrylium dye salts by either 
incorporating the dye in ethyl cellulose at a concentration 
sufficient to encourage crystallization or by employing a D-
10-camphorsulfonate counterion. 

Figure 2 presents the absorption and CD spectrum of 
tri(p-tolyl)pyrylium fluoroborate (3),31 as a typical example, 
in ethyl cellulose. Even though the absorption spectrum of 3 
in ethyl cellulose does not clearly indicate the presence of the 
J-aggregate species the CD readily shows the J-aggregate 
absorption in a spectral region beyond the monomer absorp­
tion. 

We conclude that the reports of CD within the electronic 
transitions of the J-aggregated species of I30 and 2 induced by 
mechanical swirling are due to the artifact of linear dichroism. 
Also, we propose that rigid chiral polymer films be employed 
for such studies, since they allow one to distinguish between 
linear and circular dichroic effects. This technique also pro­
vides a chiral environment for the preferential nucleation of 
either D or L crystallites and may be generally applicable to 
probing the electronic structure of other enantiomeric micro-
crystalline species via their CD spectrum. 
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Arene-Metal Complexes. 11.' Conversion of 
(778-Allyl phenyl ether)dicarbonylchromium to 
(x-Allyl)(6-oxocyclohexadienyl)dicarbonylchromium 

Sir: 

Treatment of (778-benzonorbornadiene)dicarbonylchrornium 
with triphenylphosphine in benzene gives in good yield the 
corresponding (arene)(triphenylphosphine)dicarbonylchro-
mium complex which results from displacement of the com-
plexed carbon-carbon double bond by triphenylphosphine. 
However, when (?)8-allyl phenyl ether)dicarbonylchromium 
(I)2 or the 3,5-dimethyl derivative 23 was submitted to these 
reaction conditions,4 the corresponding isomeric (7r-allyl) 
(6-oxocyclohexadienyl)dicarbonylchromium complex, 35 or 
4,6 was obtained instead. Subsequently we established that the 
triphenylphosphine has no effect on this isomerization by ob­
serving that a solution of 1 in benzene at room temperature in 
the absence of any additional reagents isomerizes to 37 at a rate 
comparable to that in the presence of triphenylphosphine. This 
reaction represents a novel route to Tr-allyl complexes, and 3 
and 4 are unusual in as much as they are air-stable, moderately 
water-soluble, chromium(O) complexes possessing the 6-oxo-
cyclohexadienyl ligand, an uncommon ligand which has only 
recently been reported to form 7r-complexes with metal 
ions.8 

1.R = H 
2,R = CH3 

3,R = H 
4,R = CH3 

The anion form of the 6-oxocyclohexadienyl ligand is the 
phenoxide ion, which can also be thought of as a cyclopenta-
dienide with a CO inserted between two carbon atoms. The 
stability of complexes 3 and 4 suggests that the preparation of 
numerous analogues of cyclopentadienide complexes which 
contain this ligand may be possible. 

Our proposed structures for complexes 3 and 4 are supported 
by their NMR and IR data. The NMR spectrum of 4 is more 
easily analyzed since 4 possesses two methyl groups. The single 
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signal for both methyl groups and the single signal for both ring 
hydrogen atoms that are adjacent to the ring carbonyl group 
are consistent with the plane of symmetry which our proposed 
structure for 4 possesses. Moreover, the NMR spectra of both 
3 and 4 show A2M2X patterns which are very similar to those 
described for ir-allyl moieties of other x-allyl complexes.9 The 
IR spectra of both 3 and 4 show an absorption at 1600 cm - ' 
which is almost as intense as those due to the metal-bound 
carbonyl groups. For this reason our proposed structures for 
3 and 4 are ones that possess a ring carbonyl group. 

In the presence of triethylamine the isomerization of 
arene-chelate 2 to 4 still occurred but in the presence of carbon 
monoxide 2 was converted to the corresponding (arene)tri-
carbonylchromium complex. 

Treatment of arene-chelate 1 with boron trifluoride etherate 
in benzene resulted in the immediate formation of the BF3 
adduct of 3 (5).10 Complex 5 could be converted to 3 by 
treatment with diisopropylamine. In a separate experiment 5 
was obtained by treatment of 3 with boron trifluoride ether-
ate. 

° / y\ 
c ^ 

CT 
5 

The NMR spectrum of 5 is similar to that of 3 except that 
the ring hydrogens of 5 are deshielded compared to those of 
3, most likely a result of the electron withdrawing character­
istics of the BF3 moiety. " I n comparing the ir-allyl portion of 
the NMR spectrum of 3 to that of adduct 5 the chemical shifts 
of Hvi (which are cis to Hx) and Hx of 5 are lower field than 
those of 3, but the chemical shift of HA of 5 is about the same 
as that of 3. If these shifts are due to through space effects then 
the orientation of the 7r-bound allyl group is such that Hx is 
pointing toward the complexed ring in each complex. 

The basicity of the ring carbonyl group of complexes 3 and 
4 is further indicated by the formation of a stable hydrochloride 
salt (6)'2 of 4 prepared by treating 4 with dry HCl in an 
ether-benzene mixture. 

The 6-oxocyclohexadienyl ligand is the middle member of 
the series of unsaturated ketones which includes cyclopenta-
dienone and cycloheptadienone, and in fact complexes 3 and 
4 appear to possess some properties which are similar to those 
of (cyclopentadienone)tricarbonyliron (7)'3 and (cyclohep-
tatrienone)tricarbonylchromium (8).l4 For example all of these 
complexes can be protonated by mineral acids forming stable 
salts. The ring carbonyl group of neither complex 4 nor 8 will 
undergo nucleophilic attack by «-butyllithium and neither 4 
nor 8 can be alkylated with methyl iodide. 

The mechanism for the cleavage reaction catalyzed by the 
Lewis acid boron trifluoride probably involves initial com-
plexation of the BF3 with the ether oxygen atom followed by 
cleavage of the oxygen allyl bond. Apparently in the absence 
of a Lewis acid cleavage of the oxygen allyl bond occurs 
spontaneously. 
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Phototransposition of Carbon Atoms 
in Cyclopentadiene. Photoisomerization of 
Cyclopentadiene to Tricyclo[2.1.0.025]pentane 

Sir: 

Numerous five-membered heteroaromatic compounds are 
converted photochemically to ring-atom transposed isomers: 
indazole, for instance, is rearranged to benzimidazole;1 2-
phenylthiophene gives 3-phenylthiophene;2 and 3,5-diphen-
ylisoxazole affords 2,5-diphenyloxazole.3 Heteroatom-con-
taining analogues of bicyclo[2.1.0]pent-2-ene and 3-vinylcy-
clopropene are the most commonly invoked intermediates re­
sponsible for these isomerizations; in some instances, such 
molecules have been detected and characterized.4 

Phototransposition of carbon atoms has not been observed 
in the analogous hydrocarbon systems, for cyclopentadienes 
exhibit facile thermal5 and photochemical6 1,5 shifts which 
would tend to obscure possible skeletal-atom permutations. 

We have addressed this experimental problem through 
synthesis and photolysis of vicinal [l3C2]cyclopentadiene: the 
phototransposition reaction does occur, and the previously 
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